Tag: vibes

Premier Vibe Note Pegs (Job No: 1264)

wpid-wp-1438675862114.jpg

This little item has been causing issues for a long time now!  It is the rubber note peg cap off a Premier 751 vibraphone, but it has been used on several generations of Premier’s vibraphones.  Of course Premier stopped producing the 751 and the 701 vibes a long time ago now; it was probably around 2008 when Premier asked me to come and relieve them of all their obsolete spare parts which had been hanging around in their factory for years.

The root cause of the problem with these note peg caps is difficult to avoid; rubber degrades in light and air.  Ultra violet light, but mainly Ozone that are main the culprits, so the only way for you to prolong the life of them on your vibraphone is to remove these two factors.  So from now on practice in the pitch black within a vacuum; I hear that NASA have space suits going cheap now they are being undercut by China.

Back in 2008 I also obtained access to Premier’s tooling for injection moulding these parts.  I dutifully went off and requested quotes from rubber moulding companies to have some made up.  The received quotations were ridiculously high, with the quantities ridiculously large that I just could never see a time when I could afford the £47,000+VAT to have 20,000 made.  Obviously they did not want to make them using the old moulds, and new moulds would also be too expensive, so a non commercially produced method for making the parts had to be developed.

My solution was to use a two part synthetic “rubber” that can be mixed and injected by hand into a mould.  This brought the required investment down to around £1000, which is still a lot of money in my world!  Along with the financial investment into tools and materials, I have also had to invest a lot of time in learning how to use them.

This whole project has, in reality, been a massive spanner in the works – whole days would be lost producing a pattern or some “bit” I needed, only to discover the next day that it wouldn’t work.  This continuous distraction has been the reason for my absence!  Below is a highly condensed video of how I went about it.


Having finally made a sufficient number moulds for me to replace all the pegs on a vibraphone, I had eventually got to the position when I could completely use up the two pots of gunk I will use when making up the kits and thus discover whether my idea is actually cost effective.  Because the original note pegs cost £3.75 each, but are sold (by me) singly due to their scarcity, I certainly want my replacements to be cheaper than this, but what I really want is to get a whole instrument done for less than £200, which is a unit cost of £2.25.  The material costs for one pair of pots are currently £19, so I had to form more than 6 to beat the cost of the original spares, and more than 8 to achieve my target.  In reality I got 20 note pegs reproduced out of one pair of pots which is fantastic, so the main costs associated with the job, will be the moulds.

Replacement Kit for Premier 750 series Note Peg Caps.

Initial Kit at currently £60 contains: 2 moulds, 1 x 50ml part A (black), 1 x 50ml part B (white), 10 mixing pots, 10 x 5ml syringes, 20 tea spoons, 20 nitrile gloves, 5 cocktail sticks, 2 Kebab skewer.

Refill kit at currently £20 contains the same minus the two moulds.

Below is an instructional video on how to use the kit from preparation to completion.


Musser M55 Vibraphone (Job No: 1251)

Of all the vibraphones on the market, this is the one to buy, especially if you want an instrument that you might be able to sell again in the future and get a decent price.

The Musser M55 is the bench mark vibe, when I look at other instruments from different manufacturers, I can see that they have essentially copied this design.

There are however problems with this vibe, mainly down to using poor materials in the frame, but you show me a major manufacturer who doesn’t make frames for percussion instruments as cheaply as possible.

If distributors don’t send me catalogues I am never going to see “new” instruments until they have broken, so consequently I’m not very up to date on Musser’s entire range of vibraphones, but I can’t see any reason to not buy this vibe with no added extras that cost extra money but don’t do anything or work.

Anyway, I last saw this vibraphone when I had a workshop in London, probably around 2003.  This is the players gigging vibe as opposed to the practice instrument at home, and it gets used a lot, but now it needs some attention.

The biggest problem is that the pedal moves all over the place, and as soon as I take a look, I can see why.

wpid-img_20150218_114305.jpg

Basically the screw that holds the pedal onto the bottom bar acts like a rasp on the very thin aluminium.  The main issue I have with the way this instrument is built is the thinness of the aluminium.  Structurally it is not up to the job, and this level of wear is a further reason why it is no good.

wpid-img_20150218_151753.jpg

What I did was make a new bit to replace the old bit – I have no idea what to call the extra bit of square tube that Musser put on the underside of the main cross bar, the piece that makes the pedal sit at the correct height.  (A classic case of bodging it when you make a mistake on the drawing board, which never gets changed.  I reckon that even Musser believe the excuse for it’s existence – but let’s face it, it’s a cock up!)

So yes, I made a new “bit” and enlarged the holes through where the pedal attaches.  Then I made a nylon insert through which the pedal fixing bolt passes.

wpid-img_20150218_1517522.jpg.jpeg

This was made so that it is held in place by the ally plate on top and the “bit” underneath.  Because the nylon is now proud of both surfaces of the cross bar, the pedal rotates silently and smoothly – no metal to metal contact.  The bolt is now supported over its length, so the pedal cannot twist backwards.

I was unwell at the time, so didn’t take enough pictures, because my brain was like custard.  I did find other problems but I will undoubtedly cover them in the future on other vibes.

Bergerault Vibraphone (part 4) (Job No: 1214)

This post continues on from 1214: Bergerault vibe (part 3) and started with 1214: Bergerault vibe (part 1)

The inner two note rails are only supported at the high end of the vibraphone by a metal bracket.  Onto this bracket is also mounted the motor.
wpid-wp-1416390446187.jpeg

Because I have increased the depth of the two outer rails this bracket no longer fits.
wpid-wp-1416390258250.jpeg

So I just modified the design a little, and welded new outer supports in.  Now it will also be stronger, and certainly welding is a lot stronger than brazing which is how Bergerault make their instruments.  Welding is fusing two like metals together, so essentially it becomes one piece, whereas brazing uses a different metal to join the two elements, like glueing them together.
wpid-wp-1416390856142.jpeg

Now this bracket is on, the top frame is rigid, all it needs is the motor unit.  Then I can put the legs on the vibe, and put the notes back on.
wpid-wp-1416391029680.jpeg
wpid-wp-1416391127893.jpeg

It’s both satisfying and dissatisfying to see it all finished.  On the one hand it is good to see a finished instrument, especially when the job has been so involved.  On the other hand it looks just the same as it did when it came in, which is the point, but still I can’t really see any evidence of all the work I have done.

Bergerault Vibraphone (part 1) (Job No: 1214)

These Bergerault four octave vibraphones are massive!  Even though vibe notes are made from aluminium, that doesn’t make them light, in fact the opposite is the case.  Percussion instruments are heavy, but vibraphones are particularly so.

The reason for this vibraphone coming into my workshop was because the butterflies in the resonators were hitting the underside of the note bars.  When I went to collect it, I spotted the probably cause, and verified it with my straight edge once back at base.

wpid-wp-1415180737418.jpeg

wpid-wp-1415180754887.jpeg

Because the vibraphone is so big, it is hard to get it all in the photo and still see the issue when the notes are on, but after I have removed the notes it can be clearly seen that the instrument sags in the middle.

The first job is to remove the base frame, which are attached to the end boards.  It was at this stage that I noticed another potential problem:

wpid-photogrid_14151813666492.jpg.jpeg

The little blocks that Bergerault have put in to hold the resonators, are wonky.  I will have to investigate this, because I also noticed that the resonators didn’t hang straight, they were pulled in at the bottom.  I suspect that this is a Bergerault design error, but it just seemed wrong to me.

Once the legs are off, I can now remove the High End board using the motor support bracket to hold the note rails.
wpid-wp-1415181944428.jpeg

wpid-wp-1415182082704.jpeg

Next the motor and control unit are removed.  I will take the opportunity to improve this whole area which at the moment looks like a dogs dinner.

Finally the offending rails can now be removed from the Low End Board.  Classic understatement, I had to sit down and take a breather after I finally got them out!
wpid-wp-1415182274620.jpeg

Now I am ready to make some replacement rails – time to go shopping for timber.

The story continues in 1214: Bergerault vibraphone (part 2)

Premier Vibe Motor Conversion (Job No: 1101)

wpid-img_20140619_125711.jpg

This is a replacement motor unit made for a Premier 751 vibraphone.  The on/off switch, and potentiometer are on fly leads so that they can be fit either side of the leg hinge, on the underside of the high end transom.  The grey box contains the speed control PCB, capacitor, and various connectors, with an IEC socket fitted so that the power cable can be removed.

The motor carriage is made to fit 750 & 751 vibes, but will probably fit older models.  Like everything I make, it has been designed to overcome problems that I have had to repair many times.  This carriage is not only strong enough to actually hold the motor, but will actually stiffen the note rails and their joining piece.

Locating the pot and on/off switch to the end frame avoids the normal difficulties experienced when bowing the notes, and the leg hinge will offer protection to the components during transportation.

The grey box is the brains.  The IEC socket was a moment of realisation during conversation with the customer.  By using a standardised socket as opposed to permanently wired, prevents straining or damaging the cable which occurs when winding it around the instrument, and makes replacement simple.  In fact finding a replacement cable on a gig is now simplicity; just borrow the cable one powering the kettle, or pc, or guitar amp, etc, etc.  Additionally, there is now no need for anyone other than myself to open that grey box!  Finally, there are two small holes on the side, the small one is the power led on the PCB, the larger one is access for the trimming pot which can be used to increase the maximum speed, so can be ignored.

To fit it, six holes need to be drilled, four for the motor carriage and one each for the pot and power switch. Then its just a matter of routing the cable.